Query Expansion by Pseudo Relevance Feedback

ZHEYUN FENG
FENGZHEYQMSU.EDU
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
MICHIGAN STATE UNIVERSITY

August 27, 2012

1 Introduction

In this document, we describe our algorithms for automatic query expansion.
The proposed algorithms are implemented in Java where the Lucene libraryE]
is modified and used by the proposed algorithms for document retrieval. In
order to support accurate document retrieval, we have implemented the
okapi(BM25) formulation EI for measuring the document-query similarity
measure. Three query expansion methods are studied and implemented in
the attached software, including query expansion based on pseudo relevance
feed back [I], query expansion using documents returned by Google search
engine, and query expansion using the synonym sets defined by WordNet [ﬂ
The rest document is organized as follows: Section 2 describes the Okapi
(BM25) formulation for document-query similarity measure, Section 3 de-
scribes different approaches for query expansion, and Section 4 presents the
evaluation results for the developed approaches for query expansion.

2 Okapi (BM25) Formulation for Document-Query
Similarity Measure

The Okapi (BM25) formulation for document-query similarity measure is
considered to be the state-of-the-art for document retrieval. Given a query

"http://1lucene.apache.org/core/
*http://nlp.uned.es/~jperezi/Lucene-BM25/
3http://wordnet.princeton.edu/

http://lucene.apache.org/core/
http://nlp.uned.es/~jperezi/Lucene-BM25/
http://wordnet.princeton.edu/

q that contains keywords t1, ta, - - - , t,, the Okapi BM25 score for a document
d is given by [2]:

- fti,d) - (k+1)
Score(d,q) = idf (t;) -
() ; e fi,d)+k-(1—b+b- av';i,‘dﬂ W

Where f(t;,d) measures the occurrence of term ¢; in document d, |d| mea-
sures the number of words in document d, and avg_dl is the average doc-
ument length for the entire collection of documents. idf(¢;) is the inverse
document frequency weight for term ¢;, and is computed as:

N —n(t;)+ 0.5
n(tz) + 0.5

idf (t;) = log (2)
where N is the total number of documents in the collection, and n(t;) is the
number of documents containing ¢;. The parameters k and b are determined
empirically, and was set to be 2 and 0.75, respectively, in our implementation
as suggested in [2].

3 Query Expansion

Query expansion reformulates the original query issued by the user with the
goal of improving the retrieval performance. In particule, query expansion
could improve the original query by either re-weighting the terms in the
original query, or adding extra terms to the original query to address the
vocabulary mismatch problem. Below, we describe four approaches for au-
tomatic query expansion, i.e. query expansion based on pseudo relevance
feedback, query expansion based on documents returned by Google search,
query expansion based on the synonyms defined in WordNet, and query
expansion based on the random walk model.

3.1 Query Expansion based on Pseudo Relevance Feedback

The most common approach for relevance feedback is the Rocchio method,
where the key idea is to expand the original query with popular words ap-
pearing in the relevant documents and remove words from the original query
if they are frequently used by the irrelevant documents. Let q be the term
frequency vector for the original query, let S; = {dr, ...,d;} be the col-
lection of documents that are deemed to be relevant to the given query q,
and S_ = {dy,...,d; } be the collection of irrelevant documents for query

q. The expanded query, based on the set of relevant documents from S
and the set of irrelevant documents from S_, is given by

_ B
q:q—i—% >od-5 > d

desy des_

where parameters « and § are determined empirically.

Since the Rocchio method requires the knowledge of relevant and irrel-
evant documents for a given query, it can not be applied directly to the
standard setup of document retrieval. Pseudo relevance feedback addresses
this limitation by (i) assuming that the top returned documents are likely
to be relevant (ii) ignore the factor of irrelevant documents in the Rocchio
equation. In other words, &4 will include the first m returned documents,
where m is determined empirically.

3.2 Query Expansion Using Google Returned Documents

This method is similar to query expansion based on pseudo relevance feed-
back described in the previous section. The key difference is that instead of
using the top ranked documents returned from a given collection, the top m
documents returned by Google are treated as relevant documents and used
as the basis for query expansion.

3.3 Query Expansion Using Synonyms Defined by WordNet

WetNet define a large number of synonym sets (referred as synset), each
corresponding to a different concept. We expand the original query by first
finding the matched synsets that include the query words, and then including
in the original query the words that appear in the matched synsets. The
resulting expanded query vector is given by

q=q-+aqs (3)

where qs includes the synonyms found in the matched synsets, and parame-
ter a € (0, 1) is introduced to down weight the significance of expanded query
words when computing the similarity between queries and documents.

3.4 Query Expansion based on Random Walk Model

The key idea of random walk model for document retrieval is to view the
process of identifying relevant documents as a random walk over a weighted
graph: both documents and the query are mapped to the vertices in the

graph; each document and the query is connected by an edge that is weighted
by the similarity between the document and the query; similarly, any two
documents are connected by an edge weighted by the similarity between
the two documents. Consider a random surfer, starting from the query,
performs random walk over the connected graph, with the probability of
jumping from one vertex from another set to be proportional to the simi-
larity between the two vertices. We measure the final similarity between a
document and the query as the chance for the random surfer to land on the
vertex corresponding to the document. It can be shown that, if the random
surfer is only allowed to walk m + 1 steps over the connected graph, the
chance of landing on individual documents, denoted by p = (p1,...,pPN),
where N is the total number of documents in the collection, is given by

p x (AAT)™Aq

where A = (dy,...,dy)" is the document-term matrix, with each row cor-
responding to the term frequency vector of a document. Given the proba-
bilities p, the expanded query vector is given by

N
=) pidix ATp=AT(AAT)"Aq
=1

We note that the random walk model is closely related to pseudo rele-
vance feedback and Latent Sematic Index (LSI). In fact, if we set m = 0, the
probabilities p oc Aq are proportional to the document-query similarity, and
therefore the expanded query will be similar to the one obtained by pseudo
relevance feedback. On the other hand, if we set m to be a large number,
probabilities p will be determined mostly by the top eigenvectors of A, and
the resulting expanded query will be similar to the one obtained by LSI.
In our implementation, we found that m = 1 yields the best performance
compared the other choices of m.

4 Evaluation

4.1 Evaluation by Document Retrieval

In the first experiment, we evaluate the performance of thee three methods
for query expansion (i.e. query expansion based on pseudo relevance feed-
back, Google returned documents, and WordNet) by a retrieval experiment.

The data set used for evaluation is consisted of 79,923 documents and rele-

vance judgments for 50 queries. More information about this collection can
be found [

Pseudo relevance feedback Figure (1| show the precision/recall curve
and the average precision for the first 100 returned documents using different
numbers of top ranked documents for query expansion. Parameter « set to
be 0.3 in this experiment. We observed that (i) pseudo relevance feedback
significantly improves the retrieval performance compared to the retrieval
method without using pseudo relevance feedback (m = 0). and (ii) pseudo
relevance feedback achieves good retrieval performance when setting m = 15.
Figure |2 shows the precision/recall curve and the average precision for the
first 100 returned documents using different values for parameter o. m is
set to 15 in this experiment. We observed that pseudo relevance feedback
achieves good retrieval performance when a = 0.1.

average interpolated precision at recalls non-interpolated precsion at docs

0.35

average precision
average precision

03

0.25

0.2

0 0.2 0.4 0.6 08 1 0 20 40 60 80 100
recall num of docs

(a) Precision/recall Curve (b) Precision for top ranked documents

Figure 1: Precision-recall curve (left) and precision for top ranked documents (right)
using different number (m) of top returned documents for query expansion. The simplified
Rocchio algorithm is used for query expansion. « is set to 0.3. Lucene default scoring
function is used to measure the document-query similarity.

Query expansion using Google returned documents To extract doc-
uments returned by Google, we use the Google Web search API E Since
the result returned is in Javascript format, to make it compatible with our

“http://www.cse.msu.edu/~cse484/hw/hwé.zip
https://developers.google.com/web—search/docs/#fonje

http://www.cse.msu.edu/~cse484/hw/hw4.zip
https://developers.google.com/web-search/docs/

average interpolated precision at recalls non-interpolated precsion at docs

—o—a=0
&—0a=0.01
0.74 w01 045
a=03
—+—0a=0.6 0.4

o
w
&

o
@

average precision
average precision

o
N
&

o
N

0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100
recall num of docs

(a) Precision/recall Curve (b) Precision for top ranked documents

Figure 2: Precision-recall curve (left) and precision for top ranked documents (right)
using different values for « in the simplified Rocchio algorithm. m is set to 15. Okapi
BM25 scoring function is used to measure the document-query similarity.

java version code, we use the Gson library ﬁ to convert the javascript ob-
jects to JSON representation, which can be used directly in the java code.
One shortcoming with using the Google returned documents is the limited
number of queries can be submitted through the Google Web search API
where the related discussion can be found https://developers.google.
com/web-search/terms and https://developers.google.com/errors/.
Figure andshow the retrieval performance (measured in precision/recall
curve and average precision for top returned documents) for varying m, the
number of top ranked documents, and parameter a used by the simplified
Rocchio formulation, respectively. We observed similar results as pseudo
relevance feedback, namely (i) overall the query expansion based on Google
returned documents improves the retrieval performance, and (ii) the query
expansion achieves the best performance when m = 10 and a = 0.6.

Query expansion using synonym sets defined in WordNet Figure[j
show the retrieval performance (measured in precision/recall curve and av-
erage precision for top returned documents) for varying the parameter «
used by the simplified Rocchio formulation. We observed that no matter
which value is used for a, the query expansion based on the synonyms de-
fined in WordNet is unable to improve the retrieval performance compared
to the method that directly uses the original query. This is consistent with

http://code.google.com/p/google-gson/.

https://developers.google.com/web-search/terms
https://developers.google.com/web-search/terms
https://developers.google.com/errors/
http://code.google.com/p/google-gson/

average interpolated precision at recalls non-interpolated precsion at docs

o
w
&

o
@

average precision
average precision

o
N
&

0.2

0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100
recall num of docs

(a) Precision/recall Curve (b) Precision for top ranked documents

Figure 3: Precision-recall curve (left) and precision for top ranked documents (right)
using different number (m) of top Google returned documents for query expansion. The
simplified Rocchio algorithm is used for query expansion. « is set to 0.3. Lucene default
scoring function is used to measure the document-query similarity.

average interpolated precision at recalls non-interpolated precsion at docs

0.4

o
@
&

o
w

average precision
average precision

o
N
]

)
N

0 60
recall num of docs

(a) Precision/recall Curve (b) Precision for top ranked documents

Figure 4: Precision-recall curve (left) and precision for top ranked documents (right)
using different values for « in the simplified Rocchio algorithm. The first 10 Google
returned documents are used as the basis for query expansion. Lucene default scoring
function is used to measure the document-query similarity.

previous studies of using WordNet for query expansion. The common belief
for the failure of using WordNet is that the words in synonym sets tend to
have multiple senses, and as a result, the expanded synonyms may lead to
the retrieval of irrelevant documents.

average interpolated precision at recalls non-interpolated precsion at docs
0.7 0.5
—6—a=0 ——a=0
—&— a=0.001 0.45 —&—a=0.001 ||

0.4 “— a=0.01
a=0.1
—+—0a=0.3

o
o

o
=

o
@

average precision
average precision

o
o

o
o

o
o
o

0.2 0.4 0.6 0.8 1 0 20 40 60 80 100
recall num of docs

)

(a) Precision/recall Curve (b) Precision for top ranked documents

Figure 5: Precision-recall curve (left) and precision for top ranked documents (right) for
query expansion using the synonym sets defined in WordNet with varied weight o. Lucene
default scoring function is used to measure the document-query similarity.

Comparison Fig[f] shows the comparison of different methods for query
expansion:

e Lucene+Google that uses Lucene default scoring function for document-
query similarity measure and expands the original query based on the
top 10 document returned by Google. Weight « is set to 0.6.

e Lucene+Rocchico that uses Lucene default scoring function for document-
query similarity measure and expands the original query based on the
top 15 document returned from the given document collection. Weight
a is set to 0.1.

e Okapi+Google that uses the Okapi formulatoin for document-query
similarity measure and expands the original query based on the top
15 document returned by Google. Weight « is set to 0.6.

e Okapi+Rocchico that uses the Okapi formulation for document-query
similarity measure and expands the original query based on the top
15 document returned from the given document collection. Weight «
is set to 0.1.

Overall, we observe that the Okapi method delivers significantly better per-
formance for document retrieval than the Lucene default scoring function.
The difference in the retrieval performance between using Google returned
documents and documents returned from the given collection is relatively
small.

average interpolated precision at recalls non-interpolated precsion at docs

0.8 05
—&— Lucene + Google EIN —&— Lucene + Google
ofd &— Lucene + Rocchio| | Q4 \ &— Lucene + Rocchio

£— Okapi + Google 0451 £— Okapi + Google [
\W Okapi + Rocchio Y Okapi + Rocchio

o
w
&

average precision
o
@

average precision

o
N
&

0.2

recall num of docs

(a) Precision/recall Curve (b) Precision for top ranked documents

Figure 6: Precision-recall curve (left) and precision for top ranked documents (right) for
different query expansion methods where m and « are chosen to optimize the performance.

4.2 'Word Expansion

We used four methods to expand a single word or a small set of words:
pseudo relevance feedback, Google returned documents based expansion,
WordNet based expansion and latent semantic indexing expansion. The
first three ones are explained in details in the previous sections.

5 Evaluation by Examining Expanded Query Words

We also manually check the expanded query words to see which makes more
sense. In this experiment, we include the results from all four methods for
query expansion, i.e. query expansion based on pseudo relevance feedback,
Google returned documents, synonym sets defined in WordNet, and random
walk model. Nine single word queries are used in our study. They are: aids,
crop, education, Israel, legal, murder, politics, price, and stock. Table [1| to
[9 include the first five words expanded by the four methods. We observed
that the query expansion method based on random walk model appears to
work best. Compared to the other methods, it is able to identify relevant
keywords for almost all queries.

In these tables, PRFL represents Pseudo relevance feedback with Lucene
default scoring, and PRFO represents Pseudo relevance feedback with Okapi
BM25 scoring, and RW represents Random walk model.

Method | 1 2 3 4 5
PRFL | aid viru infect disea drug
PRFO | aid viru infect disea drug
Google | hiv aid immunode | viru immun

WordNet | aid assist attent care tend

RW aid viru infect disea contra
Table 1: Query expansion for word ”aids”.

Method | 1 2 3 4 5
PRFL crop farmer insur appl gantz
PRFO | crop farmer drought cotton acr
Google | crop noun resiz produc programm

WordNet | crop brows clip craw cultiv

RW crop cent bushel soybean corn
Table 2: Query expansion for word ”crop”

Method | 1 2 3 4)
PRFL educ univ phd school cathol
PRFO | educ univ cathol school phd
Google | educ student teacher inform colleg

WordNet | educ

LSI educ school student teacher colleg
Table 3: Query expansion for word ”education”

Method | 1 2 3 4 5
PRFL | israel hungari isra ti hungarian
PRFO | israel isra hungari mubarak taba
Google | israel inform geographi economi tourism

WordNet | israel sion yisrael zion

LSI israel isra palestiniar arab plo

Table 4: Query expansion for word ”Israel”

10

Method | 1 2 3 4 5
PRFL legal marcum drug countian frazier
PRFO | legal drug durant expen marcum
Google | legal onlin dictionari seafood lesbian

WordNet | legal effectu sound

LSI legal court law attornei judg
Table 5: Query expansion for word ”legal”

Method | 1 2 3 4 5
PRFL | murder caldwel mathebula | degr weed
PRFO | murder westi racket thompson convict
Google | murder unlaw malic aforethought| 26666

WordNet | murder dispatch execut hit mang]l

LSI murder sentenc convict polic death
Table 6: Query expansion for word ”murder”

Method | 1 2 3 4)
PRFL polit relea prison redman ministri
PRFO | polit shim cartoon cartoonist relea
Google | polit opinion cbsnews.com| reuters.com | obama

WordNet | polit

LSI polit parti dukaki democrat bush
Table 7: Query expansion for word ”politics”

Method | 1 2 3 4 5
PRFL | price increa cent gallon relea
PRFO | price increa whole percent inflat
Google | price websit electron comput priceutah.net

WordNet | price cost damag term toll

LSI price cent stock market percent

Table 8: Query expansion for word ”price”

Method | 1 2 3 4 5
PRFL | stock tokyo nikkei point averag
PRFO | stock index futur trade otc
Google | stock market quot data nasdaq

WordNet | stock ancestri banal blood bloodlin

LSI stock nikkei tokyo point exchang
Table 9: Query expansion for word ”stock”
References

[1] T. Joachims. A probabilistic analysis of the rocchio algorithm with tfidf
for text categorization. In Proceedings of the Fourteenth International
Conference on Machine Learning, ICML ’97, pages 143-151, San Fran-
cisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

[2] S. E. Robertson, S. Walker, and M. Hancock-Beaulieu. Okapi at trec-
7: Automatic ad hoc, filtering, vlc and interactive. In TREC, pages

199-210, 1998.

12

	Introduction
	Okapi (BM25) Formulation for Document-Query Similarity Measure
	Query Expansion
	Query Expansion based on Pseudo Relevance Feedback
	Query Expansion Using Google Returned Documents
	Query Expansion Using Synonyms Defined by WordNet
	Query Expansion based on Random Walk Model

	Evaluation
	Evaluation by Document Retrieval
	Word Expansion

	Evaluation by Examining Expanded Query Words

