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ABSTRACT
This project focus on the problem of data clustering, where
the similarity between instances are measured by Euclidean
distance metric. Here we include the case where the data di-
mension, the number of clusters and the size of data set could
be very large. Genetic algorithm is used due to its capabil-
ity to capture the global optimality, leading to a promis-
ing empirical performance in the given environment. Two
crossing set selection methods, six crossover approaches and
a fine-tuning technique are applied in the projects. Our
experiments also verify that the genetic algorithm is com-
putationally efficient, and achieve comparable performance
, if not better, as the most commonly used state-of-the-art
works on large data set.
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1. INTRODUCTION
Clustering is the organization of a collection of unlabeled
patterns, i.e. a vector of measurement or a point in a mul-
tidimensional space, into clusters based on their similarity.
Intuitively, patterns within a cluster are more similar to each
other than they are to a pattern belonging to a different
cluster. Labels associated with clusters are data driven, i.e.
they are obtained solely from the data, rather than learning
from a training set as supervised classification does.

Clustering has been widely used in plenty of applications in-
cluding data mining, pattern recognition, computer vision,
image processing and information retrieval. Since recently
many clustering algorithms have been developed. Classical
clustering algorithms could be enumerated as k -means [8],
nearest neighbor clustering, spectral clustering [10], self or-
ganizing map [7], fuzzy c-mean clustering [1], and the list

∗This is a course project for CSE848-Evolutionary Compu-
tation with the instructor of Dr. Bill Punch, Fall 2012

goes on. Among them, genetic algorithm (GA), which pro-
posed early in 1989 [5], attracts many attentions because
it performs a globalized search for solutions whereas most
other clustering approaches perform a localized search and
thus easily get stuck at local optimalities. In a localized
search, the new obtained solutions inherit the ones in the
previous iteration [6]. Such examples are k -means [8], fuzzy
clustering algorithms, ANNs, annealing schemes, and tabu
search. Nevertheless, in GAs, the crossover and mutation
operators can produce new solutions that are extremely dif-
ferent from from the previous iteration, that is where the
global optimality comes from. Besides, GAs are also inher-
ently parallel, making it possible to implement on parallel
hardware so to speed up the computation.

Actually, GA is an evolutionary approaches, which applies
evolutionary operators and a population of solutions to achieve
a global optimal partition. Genetic algorithms include se-
lection, recombination and mutation. Candidate solutions
to the clustering problem are encoded as chromosomes, and
then a fitness function inversely proportional to the squared
error value is applied to determine the chromosomes’ sur-
viving likelihood in the next generation.

In the clustering problem, the solutions best fitting the data
is then chosen according to a suitable criterion. In this
project, we use a metric distance function rather than a
distance matrix to measure the dissimilarity between the in-
stances. The data attributes are converted to be numerical
if it is ordinal, and are normalized using L1 norm in each
dimension. Thus each instance is embedded into a K di-
mensional Euclidean space. The aim of the clustering is to
minimize the intra-cluster diversity, we use the mean square
error as the evaluation measure.

In a genetic algorithm (GA) we use a model of the natural
selection in real life [4], where an initial population of so-
lutions called individuals is randomly generated. The algo-
rithm produces new solutions of the population by genetic
operations, such as reproduction, crossover and mutation.
The new generation consists of the possible survivors with
the highest fitness score, and new individuals estimated from
the previous population using the genetic operations.

In this report, I am going to give a simple review on ge-
netic algorithms specific for the clustering problem. When
designing genetic algorithms for clustering problem, three
keys play a significant role: The solution representation, the



selection method, the crossover method and the mutation
method.

The efficiency and effectiveness of the GA depends highly on
the coding of the individuals. Naturally, a solution could be
either a partitioning table, or a set of cluster centroids. The
partitioning table actually is the cluster assignments for each
instance in the data set. A cluster centroid has the same di-
mensions as an instance, and is estimated by averaging all
the instances in the entire data set which correspond to the
particular cluster. Two parent selecting ways are used in
this project: a probability-based roulette wheel method and
an elitist way with different crossover rate. In the roulette
wheel selection, a parent is chosen to according to a proba-
bility estimated from the mean squared error. In the elitist
method, a set of best solutions are accepted while the rest
are dropped.

In the crossover phase, six methods are employed, including
random crossover [9], centroid distance [9], pairwise crossover [4],
largest partitions [4], pairwise nearest neighbor (PNN) [2],
and iterative shrinking (IS) [3]. Among them PNN and IS
are hybrid methods, which adopt few steps of the conven-
tional k-means clustering algorithm. To improve the clus-
tering performance for the first four crossover methods, it is
meaningful to produce new solutions by crossover and then
fine-tuned by a partial k-means algorithm.

The rest of the paper is organized as follows. In Section 2
we simply summarized the clustering problem. In Section 3,
essential features of the genetic algorithm will be reviewed.
Besides, results of the experiments are reported in Section 4,
where a comparison with other state-of-the-art clustering al-
gorithms is concluded. Finally, we draw a couple of conclu-
sions in Section 5.

2. CLUSTERING PROBLEM
In the clustering problem, X = x1, · · · ,xN

T ∈ RN×D de-
notes an instance matrix, which consists of N examples and
each instance vector has D attributes. C = c1, · · · , cNT ∈
[1,M ]N×1 is a vector denoting the cluster assignments. A
specific clustering or partition can be expressed as π =
C1, · · · , CM of X.

For a specific clustering, each cluster Ci, i ∈ [1,M ] has an
alternative representative element called centroid, denoted
as ci, and it can be computed from the instance matrix X:

ci =

∑
x∈Ci

x

|Ci|
(1)

where |Ci| is the number of instance corresponding to clus-
ter Ci, which means ci is the nearest centroid for these in-
stances.

Given that the data are embedded in an Euclidean space,
the distance between two instances xi and xj can be defined
by:

d(xi,xj)
2 = ‖xi − xj‖22 =

D∑
k=i

(xi(k)− xj(k))2s (2)

Then we can draw the mean square error for a specific clus-

tering π as:

MSE(π) =
1

ND

N∑
i=1

‖xi − f(xi)‖22 (3)

where f is a mapping giving the closet centroid in solution
π for instance xi. And essentially, the problem of clustering
is to determine a clustering π∗ such that

π∗ = arg min
k
MSE(πk)

When we use (2) as the distance measure, we assume that
each dimension of an instance is numerical and has the same
scale. So before clustering, we need to preprocessing the
original data. We binarize the ordinal value, and normal-
ize each dimension using L1 norm. The MSE formulated
in (refmse) measures the distortion of a clustering solution.
This is one of possible evaluation criterion, and the user can
switch the choice based on the specific environment.

3. GENETIC ALGORITHMS
A sketch of genetic algorithm is shown in Algorithm 1. The
genetic algorithm evolves a population of candidate solu-
tions represented by strings of a fixed length. Each indi-
vidual of the population stands for a clustering of the data,
and it could be either a vector cluster assignments or a set
of centroids. An individual is initially created by randomly
selecting M instances from the data set as cluster centroids
and then mapping all the instances in the data set to their
nearest centroid, according to (2). In each iteration, the
best Sb solutions are selected to survive to the next genera-
tion. The rest of the population is replaced by new solutions
generated in the crossover phase.

Algorithm 1 Outline for a genetic algorithm

Generate S randomly solutions for the initial generation.
while iteration times < T or termination criteria not meet do

Select Sb surviving solutions for the next generation.
Select solutions to form the crossing set.
Select Sc pairs of solutions from the crossing set.
Perform crossover to generate new solution.
Perform mutation to the solutions.

end while

3.1 Solution representation
A solution to the clustering problem can be represented ei-
ther by a partitioning table or a set of cluster centroids.
These two depend on each other, so if we fixed one of them,
the other could be uniquely constructed using the way de-
scribed as follows:

• Given a set of cluster centroids, a partition table can be
constructed by assigning each instance in the data set its
closest centroid in respect to the distance function.

• Given a partition table, the cluster centroid can be ob-
tained by taking the mean vector of the instance corre-
sponds to that cluster, and the centroids for all clusters
form a cluster representative.

These two variations of clustering representation give rise
to two alternative approaches to the clustering problem:
centroid-based and partition-based [4] clustering methods.



In the partition-based methods, the partitions are the in-
dividuals of the population, and gene (elementary unit) is
a membership to a certain single cluster. The centroids
thus can be computed using the way above. The partition-
based clustering is wildly used in conventional clustering al-
gorithms, and is still commonly used now but with assistant
mechanisms to guarantee its performance and efficiency.

In the centroid-based approaches, the sets of centroids are
the individuals of the population, and the gene is the cen-
troid of a corresponding cluster. This way is commonly used
in vector quantization. The partition table, however, is nec-
essary when we do further operation such as crossover, and
when the clustering relationship needs to update, where the
nearest neighbor way can be used. And these sets of centroid
is also called codebook. The generation of codebook, or in
other word, the relationship between centroids and partition
table is depicted in Figure 1.

Figure 1: Relationship between partition table and
codebook.

From the aspects of genetic algorithm, the difference be-
tween the two representation ways relies on the objects of
genetic operations, leading to extremely different crossover
and mutation strategies. Though commonly used, the draw-
back of partition-based representation lies that when a sim-
ple random crossover operation performed, the clusters be-
come non-convex, specifically, the instances far away to each
other may be assigned to the same cluster. When the pop-
ulation is large enough, theoretically this convexity won’t
reduce the clustering performance but greatly decrease the
convergence speed. However, this can be relieved by the
fine-tuning phase. In the other hand, it is impossible for
the centroid-based representation to detour the partition-
ing, thus it would be predictably slow since the estimation
of partition table has a complexity of O(NM). It is therefore
more reasonable to operate with the cluster centroids with
assistance of the partition table. In this project, we use the
centroids as the gene of solution, but cooperating with the
partition table to ameliorate the efficiency and performance.

3.2 Selection method
Selection method restricts the parents by whom the new
generations are reproduced, which concludes three steps: se-
lecting the survivors, creating crossing set, and picking the
parent pairs for crossover out of the crossing set. The sur-
vivor selection is usually easy, by taking the best Sb solution,
where Sb is a pre-defined parameter. So our problem lies in
the generation of crossing set, as well as the parent pairs for

crossover. In this project, we applied two selection methods,
including Roulette wheel selection and Elitist selection.

Roulette wheel selection is a probability based method,
where the crossing set consists of all the solutions in the
current generation, but each solution is chosen to form a
pair of crossover parents with a different probability. To
maintain the stability of population size, we chose S − Sb

pairs of parent solutions. The solution πi is chosen with
such a probability:

p(πi) =
w(π)∑

j = 1Sw(π)
(4)

where w(π) is the weight for solution π, and it can be defined
as:

w(π) =
1

1 +MSE(π)

Elitist selection uses zigzag scanning among the best n
parents, which forms the crossing set. All the solutions in
the set are crossed with each other, so the number of new
solution produced by the elitist selection is:

Sc = C2
n =

n(n− 1)

2

The value of Sb is determined by the crossover rate pc that
Sb = (1−pc)×S. Optimal crossover rate usually lies in pc ∈
[0.8, 0.95], but sometimes it may occurs around 0.6. The
value of the crossover rate pc can be determined by cross-
validation. In the project, we used three selection strategies:

• Roulette wheel selection, with Sb = 5, and then choosing
S − Sb pairs of parents, and each solution is chosen with
a probability based on the fitness function.

• Elitist selection 1, with crossover rate equal to 0.8, where
Sb = 9, and n = 9.

• Elitist selection 2, with crossover rate equal to 0.9, where
Sb = 5, and n = 10.

3.3 Crossover operators
The crossover is performed in order to create a new better
solution from the two selected parent solutions, denoted here
by A and B and each of them has M centroids. Since we
used the centroid-based cluster representation, the crossover
in this project is thus be designed particularly with crossover
operations on set of centroids. Essentially, the crossover
phase can be regarded as selecting M cluster centroids from
the 2M two parent solutions. The newly generated so-
lution could be completely different from its parents, in-
heriting only partial parent information, and this is the
underlying reason that genetic algorithm is capable to do
global search. In consequent, we simply go over six adopted
crossover methods: random crossover, centroid distance, pair-
wise crossover, largest partitions, pairwise nearest neighbor,
and iterative shrinking. In the crossover, only the cluster
centroids are produced to form a new solution, the data in-
stance are necessary to partition to them using the nearest
neighbor criterion.



Random crossover [9] is performed by just randomly pick-
ing M/2 centroids from each of the two parents, while dupli-
cate centroids are rejected and replaced by repeated picks.
Random crossover is simple and efficient, since there is no
extra operations but randomly selection. But for each gen-
eration, it is not highly robust since it is totally possible
to pick up a bad set of centroids. Although this could be
compensate by more iterations, it will certainly prolong the
evolution time.

Centroid distance [9] first computes the centroid of the
entire data set, denoted as c∗. Then all the centroids in
both parents are sorted in respect of their distance to c∗.
The produced solution consists ofM/2 centroids from parent
A, which are the closest to c∗ in A, and another c∗ centroids
from parent B, which are the ones furthest away from c∗ in
B.

Pairwise crossover [4] pairs the centroids of the two par-
ents based on the nearest neighbor criterion using greedy
manners. Then crossover is performed by randomly taking
one cluster centroid from each pair of centroids. When two
centroids in parent A have the same nearest neighbor in par-
ent B, this neighbor will be coupled with the one closer to it.
Empirically, this algorithm does not give the optimal pair-
ing but it is a reasonably good heuristic for the crossover
purpose.

Largest partitions [4] pickes the M cluster centroids based
on a greedy heuristic based assumption that the larger clus-
ters are more important than the smaller ones, because even-
tual purpose for evolutionary clustering is to minimize the
intra-cluster diversity. The cluster centroids thus should be
assigned to a large concentration of data instances. In this
method each cluster in both parent A and B is assigned with
a value equal to the cluster size in its own solution, and then
these 2M centroids are union together. Finally the new so-
lution is formed by the M centroids with the largest number
of associating data instances.

Pairwise nearest neighbor [2] regards the crossover phase
as a clustering problem. It first combines the cluster cen-
troids from both parent A and B, then eliminates the du-
plicated centroids from the obtained union, and finally it-
eratively performs a PNN clustering on this union until the
number of clusters in the union is exactly equal to M . Then
this M newly clustered centroids are the new solution we
desired.

The PNN clustering algorithm starts by initializing a clus-
tering of size 2M where each instance is considered as a
individual cluster. Then two clusters with the shortest pair-
wise distance would be merged at each step, and this repeats
until the number of clusters is equal to M .

The main restriction of the PNN method is that the clusters
are always merged as a whole. Once the instances have been
assigned to the same cluster, it is impossible to separate
them later. This restriction is not significant at the early
stage of the process when merging smaller clusters but it
can deteriorate the clustering performance at the later stages
when merging larger clusters.

Iterative shrinking [3] first unions the centroids from both
parent A and B similarly as PNN, then generates the parti-
tion by a sequence of cluster removal operations: one clus-
ters are removed at a time by reassigning its corresponding
instance to the nearest remaining clusters. PNN is a special
case if IS.

IS first finds the second nearest cluster for each data instance
in the selected cluster, and forms a secondary partition Q =
q1, · · · , qN |qi ∈ [1,M ] for every data vector, according to a
modified distance:

qi = arg min
1≤j≤M,j 6=pi

nj

1 + nj
‖xi − cj‖22

where nj is the number of instance whose second closest cen-
troid belongs to cluster j. Then the cluster whose removal
gains the least increasing cost will be removed, in other word,
cluster a in the uion will be removed if its removal cost is
the least. The removal cost is defined as follows:

da = −
M∑
j=1

|sa,j | · ‖ca − ca,j‖22 +

M∑
j=1

nj |sa,j |
nj + |sa,j |

‖cj − ca,j‖22

where sa,j is a subcluster of cluster sa, which is defined
according to the secondary partition Q:

sa,j = {xi ∈ sa|qi = j}

and |sa,j | is its cardinality. Correspondingly, ca,j is the cen-
troid of subcluster sa,j .

Once a cluster sa with the smallest removal cost is elim-
inated, its associated instance should be partitioned to a
rest cluster, and this updating is defined as:

∀xi ∈ sa : pi ← qi.

And this removal continues until the number of left cluster
is exactly equal to M .

IS versus PNN:
The PNN method can be seen as a special case of the IS
method, as it can be simulated by the IS method as follows.
We first select the cluster to be removed as one of the two
clusters (sa and sb) selected for the merge. The merge is then
performed by moving all the instances from sb to sa, and
thus, removing sb. The centroid of sa is updated accordingly.
The result is equivalent to that of the PNN method, and
it is easy to see from Figure 2 that some of the instance
reassignments could be done better resulting in a smaller
increase in the cost function value.

The difference of the merging and removal strategies is il-
lustrated further in Figure 2. We have six data instances
located symmetrically, and the task is to find a partition
of two clusters. After the first three merges, the output of
the PNN and IS methods are equivalent but in the fourth
merge the PNN method is already restricted by the previous
merges and the result is suboptimal. The IS method, on the
other hand, ends up with the optimal result no matter what
is the order of the previous cluster removals.

It is noted, that it is still possible (although rare) to get
better result by the PNN method than by the IS method
because locally optimal steps does not necessarily lead to



(a) PNN

(b) IS

Figure 2: The cluster removal process of PNN and
iterative shrinking.

the global optimum. Nevertheless, it is expected that the IS
method would give better partition than the PNN method
in most cases.

3.4 Mutation
Each cluster centroid is replaced by a randomly chosen data
instance with a probability pm, which is also called mutation
rate. This operation is performed before the partition phase.
In this project, we fixed the mutation rate pm = 0.05, which
is obtained through cross-validation and empirically yields
a stable but good performance.

Mutation rate is a leverage between diversity and stability.
Ideally, we want a larger diversity and a higher stability,
so we need to make a good compromise between the two
and well control the mutation rate. Commonly, an optimal
mutation rate existing in the range of pm ∈ [0.005, 0.01].

3.5 Fine-tuning
One can try to improve the algorithm by applying a few
steps of the k-means algorithm for each new solution. The
crossover operation first generates a rough estimate of the
solution which is then fine-tuned by a partial k-means al-
gorithm. This modification allows faster convergence of the
solution than pure genetic algorithm.

The implementation of fine-tuning technique in this project
is described as follows. The initial solution is iteratively
modified by partitioning according to centroids, and com-
puting centroids from the newly obtained partition table.
In the first phase the centroids are fixed and the clusters
are recalculated using the nearest neighbor criterion. In the
second phase the clusters are fixed and new centroids are
estimated.

4. EXPERIMENTAL RESULTS

We evaluate clustering quality by both the mean square error
and the convergence rate.

4.1 Data set description
We applied our sequence of genetic algorithms to 6 data
sets from the UC Irvine repository 1 The summary of the
statistics about the data sets is presented in Table 4.1.

Table 1: Data sets and their statistics
Data set Attris Size Clusters Type

iris 4 150 3 real
abalone 10 4177 29 categorical,real

wine 11 4198 7 integer, real
letter 16 20000 26 integer

segment 18 2310 7 real
network 21 53413 24 integer, real

The types of data are various, and different attributes may
have values of different types, range, so we need to do some
pre-processing before clustering. We need to convert the
categorical attributes to binary ones, for example, for an
attribute indicating sex (Female or Male), we use 1 to rep-
resent female, and 0 to represent male. Then we normalized
the data into range of [0, 1] using L1 norm in respect to
columns, making each attribute having the same contribu-
tion to the distance between data.

All tests have been performed in the server of winry.egr.msu.edu,
which is equipped with Sun Fire x4150 with dual Inter Xeon
X5460 3.16GHz 64 bit processor, 64GB RAM and Linux op-
erating system.

Other experiment setup are explained in Section 3.

4.2 Effect of fine-tuning
Fine-tuning is wildly used to improve the performance of
crossover operation. In the clustering problem, the fine-
tuning in this project mentions to a few step of k -means
algorithm. The performance of the genetic algorithm with
or without fine-tuning is illustrated in Figure 3 as a function
of the number of generations for both wine and segmentation
data sets.

For random crossover, centroid distance, pairwise crossover
and largest partition, the inclusion of fine-tuning is essen-
tial; even the worst candidate in each generation is bet-
ter than any of the candidates without k means, making
a great improvement in the performance. Besides, with the
fine-tuning, random crossover, centroid distance and pair-
wise crossover even converges much faster. For PNN and IS,
there is also some improvement in the performance, although
not significant. For the segmentation data set (bottom) in
Figure 3, this improvement is apparent2.

The implementation time for all six crossover algorithms
with or without fine-tuning on wine is presented in Table 4.2.

1The UC Irvine repository data can be downloaded from
http://archive.ics.uci.edu/ml/.
2Since the fine-tuning will modify the clustering perfor-
mance greatly, alleviating the influence of other conditions,
we don’t use fine-tuning for most cases stated later. Fine-
tuning not applied if not noted.

http://archive.ics.uci.edu/ml/


Table 2: Time cost with/without kmeans on wine data set.
Random Centroid Pairwise Largest Pairwise nea- Iterative
crossover distance crossover partition rest neighbor shink

with 16.2935 15.7701 16.3933 17.6014 32.8162 418.9808
without 2.2258 2.0688 2.6190 3.8513 16.5585 422.2040
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Figure 3: Convergence of the various crossover
algorithms for both wine (top) and segmentation
(bottom)data set eith with kmeans(left) or with-
out kmeans (right), the elitist selection method was
used.

The drawback of the hybridization with fine-tuning is that
the running time considerably grows. Fortunately, it is not
necessary to perform the k means algorithm to its conver-
gence but only a couple of steps (two in the this project)
suffice. The results are similar for the other data sets not
shown in Table 4.2.

4.3 Effect of selection method
The performance of the different selection strategies is sum-
marized in Figure 4.3, where PNN crossover is on both the
wine and letter data sets. The experimental strategies are
described in Section 3.2: The roulette wheel wheel selec-
tion, elitist selection with crossover rate = 0.8, and elitist
selection with crossover rate = 0.9. The selection method
seems to have a smaller effect on the overall performance.
In most cases of PNN the elitist selection are better than
the roulette wheel selection, not only for the performance
but also for the convergence rate; and the gap is quite large
for letter data set.

The comparison of roulette wheel selection and elitist se-
lection for different crossover operations are shown in Fig-
ure 4.3. For random and pairwise crossover, roulette wheel
clearly outperforms elitist selection; while for PNN elitist is
slightly better. For largest partition and iterative shrinking,
the two selection methods have no large difference.
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Figure 4: Performance comparison of the three se-
lection strategies described in Section 3.2, where
PNN crossover is performed on both wine (left) and
letter (right) data sets.
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Figure 5: Performance comparison of the two selec-
tion strategies: roulette wheel selection(left), and
elitist selection(right), with different crossover op-
erators on wine data set.

4.4 Effect of crossover
The performance of the different crossover methods is illus-
trated in Figure 4.4 as a function of the number of gener-
ations. And the overall performance can be referred Sec-
tion 4.7: MSE comparison in Table 4.7 and running time in
Table 4.7.

PNN and IS are well outperforms the other operations by
giving the best clustering with the fewest number of iter-
ations; and in most cases, pairwise works better than the
rest three. IS converges the fastest among all, and its per-
formance is comparable to PNN that sometimes PNN wins
and sometimes the contrast. Usually, with roulette wheel
selection, IS performs better; while with the elitist selection
PNN wins. Pairwise also converges very fast. Mostly, cen-
troid crossover has the worst performance and converges the
slowest.

4.5 Effect of mutation rate
The performance of the different different mutation rate is
illustrated in Figure 7 as a function of the number of gen-
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Figure 6: Convergence of the various crossover algo-
rithms for wine (left column), letter (top right) and
segmentations (bottom right) data sets. Top row
uses roulette wheel selection and bottom row uses
elitist selection.

erations. Among the other parameters, the amount of mu-
tations had only a small effect on the performance, if the
mutation is well chosen and it can be obtained through cross
validation.

0 10 20 30 40 50
14

14.5

15

15.5

generations

M
S

E

 

 
P

m
 = 0.02

P
m

 = 0.01

P
m

 = 0.008

P
m

 = 0.005

P
m

 = 0.003

P
m

 = 0.001

0 10 20 30 40 50
14

14.5

15

15.5

generations

M
S

E

 

 
P

m
 = 0.02

P
m

 = 0.01

P
m

 = 0.008

P
m

 = 0.005

P
m

 = 0.003

P
m

 = 0.001

Figure 7: Performance comparison of mutation rate,
with roulette wheel selection + PNN (left), and eli-
tist selection + IS(right), on wine data set.

From previous observation, we know that IS works better
with roulette wheel selection than with elitist selection, see
the left column in Figure 4.4 also for wine data set. And it
also shows that PNN works better than IS in term of MSE.
But in Figure 7, the observation is surprising that when
combing these selections and crossovers, elitist selection + IS
well outperforms together roulette wheel selection + PNN.

The purpose of introducing mutation operation is to increase
the versatility and diversity of the solution group, expecting
to produce genius solution which yields an extraordinarily
clustering performance. However, this probability is rare,
and most of the mutation reduces the performance. When
the mutation occurs at the best solution in a generation, very
possible, this best solution would be sub-optimal, making
the best solution in the current generation even worse than
the one in previous generation, justified by the left example
in Figure 7. In this project, we see that when this situation

happens, the convergence curve would be no more smooth,
indicating that the stability of evolution is in threaten.

So for the unexpected phenomenon in Figure 7, both the eli-
tist selection and IS itself reduce the solution diversity too
much, either by reducing the number of parent for crossover,
or by over-tuning. However, mutation can compensate this
by introducing variation in the population, leading to the
situation that combining two conditions resulting worse re-
sults gives better performance.

4.6 Conclusions of GAs
The above observations demonstrate two important proper-
ties of genetic algorithms for large scale clustering problems.
A successful implementation of GA should direct the search
efficiently but it should also retain enough genetic varia-
tion in the population. The first property is clearly more
important because all ideas based on it, including of fine-
tuning, PNN crossover, IS crossover elitist selection, give
good results. Their combination, however, reduces the ge-
netic variation so that the algorithm converges too quickly,
as shown in Figure 7, where IS makes a good example that
when using elitist selection together with iterative shrinking,
the corresponding converges extremely fast but performs
usually worse than PNN. So to some extent, IS and elitist
selection have well taken advantage of the first properties.
Thus, we can use the roulette wheel selection or mutation
to compensate the loss of the genetic variation.

An interesting but less important question is whether extra
computing resources should be used to increase the gener-
ation size or the number of iteration rounds. Additional
tests have shown that the number of iteration rounds has
a slight edge over the generation size but the difference is
pretty small and the quality of the best clustering depends
mainly on the total number of candidate solutions.

4.7 Comparison with other clustering algorithms
GA is next compared to other existing commonly used clus-
tering algorithms, including k -means [8], spectral cluster-
ing [10], self organizing map [7], fuzzy c-mean clustering [1]3.
The best performance results for GAs, k -means, self organiz-
ing map, fuzzy c-mean clustering and spectral clustering are
summarized in Table 4.7 in term of MSE, and in Table 4.7.

We observe that GA clearly outperforms the other algo-
rithms used in comparison. Note that here GA is not tuned
to be the best, and the results are just the commonly run-
ning results. The statistics show also that GA is relatively
independent on the initialization whereas the results of k -
means have much higher variation.

The drawback of GA is its high running time, and when the
data size increases, this cost could be prohibitive. For GAs,
higher quality clusterings are thus obtained at the cost of
larger running time.

5. CONCLUSIONS
GA solutions for large scale clustering problems were studied
in this project. The implementation of a GA-based cluster-
ing algorithm is quite simple and straightforward. However,

3The baselines are implemented using the Matlab toolbox.



Table 3: Mean square error for all methods
Data Random Centroid Pairwise Largest PNN Iterative Kmeans SOM Fuzzy Spectral
sets crossover distance crossover partition shinking c-means

iris 32.05 34.62 34.17 36.68 29.16 29.16 29.16 29.16 29.51 30.25
segments 30.92 30.07 28.16 30.63 22.11 21.83 23.27 23.27 24.16 23.44
abalone 3.013 3.342 2.660 3.664 2.051 2.150 2.078 2.397 2.158 2.580

wine 29.07 33.20 28.67 29.49 23.27 25.11 24.21 24.22 28.71 24.50
letter 30.92 30.07 28.16 30.63 22.11 21.83 21.50 21.48 50.70 23.29

network 4.60 4.94 4.10 5.44 3.58 3.40 3.16 3.17 6.16 3.71

Table 4: Time cost for all methods
Data Random Centroid Pairwise Largest PNN Iterative Kmeans SOM Fuzzy Spectral
sets crossover distance crossover partition shinking c-means

iris 0.194 0.241 0.341 0.315 0.525 1.532 0.014 2.035 0.028 0.050
segments 0.983 0.966 1.416 1.368 5.27 80.61 0.065 3.728 1.283 0.281
abalone 12.26 12.90 12.84 13.93 53.00 118.9 1.894 10.44 6.118 1.019

wine 1.891 2.024 2.598 2.264 12.48 186.6 0.270 4.644 2.006 1.409
letter 26.78 26.14 27.87 31.98 183.2 21142 5.288 56.13 38.49 8.409

network 140.1 141.2 143.6 170.9 599.4 5223.3 15.3 157.4 124.8 14.35

problem specific modifications were needed because of the
nature of the data. Euclidean distance metric is not good at
capturing elliptical or chain-like clusters, so distance met-
ric learning could be adopted to improve the performance.
Also, better fitness function could be used, maybe the en-
tire or partical label information can also be used to help
improve the performance. New candidate solutions are cre-
ated in the crossover but they are too arbitrary to give a
reasonable solution to the problem. Thus, the candidate so-
lutions must be fine-tuned by a small number of steps of the
k -means algorithm.

The main parameters of GA for the clustering problems
studied here are the inclusion of k -means steps, and the
crossover technique, as well as the analysis of mutation rate,
which reflects the essence of evolutionary approaches like
GA. In most cases, the mutation probability and the choice
of selection method seem to be of minor importance. The
centroid-based representation for the solution was applied.
The results were promising for this configuration of GA. The
results of GA, which is measured by the intracluster diversity
in this project, were better than those of k -means and other
common clustering algorithms. Totally SOM gave competi-
tive results to GA with much more computing efforts.

6. REFERENCES
[1] J. C. Bezdek. Fuzzy c-means cluster analysis.

Scholarpedia, 6(7):2057, 2011.
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