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In this supplementary material, we present

1. Proof of Theorem 1.

2. Additional experimental results on average recall and
average F1 score over the three benchmark datasets.

3. A comparison of our proposed RKML algorithm and
its counterparts RLML and RKMLH over three bench-
mark datasets. RLML is the linear counterpart of
RKML, while RKMLH is the counterpart of RKML
which uses binary constraints.

4. Analysis of sensitivity to parameters in RKML, includ-
ing rank r, m′, the number of retained eigenvectors
when estimating the semantic similarity, and ns, the
number of sampled images used for Nyström approxi-
mation.

5. A comparison of different design choices of the seman-
tic similarity measure between annotations.

6. A comparison of annotation results generated by
LMNN [8] with different methods of generating binary
constraints.

1. Proof of Theorem 1
We present here the proofs of Theorem 1 in the main

paper stated as follows. Denoting the prediction function
for the k-th class by gk(·), i.e., yi,k = gk(xi), and we make
the following assumption for gk(·) in our analysis:

A1 : gk(·) ∈ Hκ, k = 1, . . . ,m.

Assumption A1 holds if gk(·) is a smooth function and
κ(·, ·) is a universal kernel [4].

Theorem 1 Assume A1 holds, and κ(x,x) ≤ 1 for any x.
Let r < n be a fixed rank, and λ1, . . . , λn be the eigenval-
ues of kernel matrix K/n ranked in the descending order.

For a fixed failure probability δ ∈ (0, 1), we assume n is
large enough such that

λr ≥ λr+1 +
8√
n

ln(1/δ).

Then, with a probability 1− δ, we have

‖T̂ − T∗(r)‖2 ≤ ε,

where ‖ · ‖2 is the spectral norm of a linear operator and ε
is given by

ε =
8 ln(1/δ)/

√
n

λr − λr+1 − 8 ln(1/δ)/
√
n
.

1.1. Sketched Proof

We first give the sketch of the proof and refer the readers
to Section 1.2 for more detailed analysis. We first rewrite T
into the following form using the expression of A in (3)

T̂ [f ](·) =

m∑
k=1

ĥk(·)〈ĥk(·), f(·)〉Hκ ,

where ĥk(·) =
∑n
i=1 κ(xi, ·)[K−1r yk]i, and yk ∈ Rn is the

k-th column vector of matrix Y .
Using the definition of gk(·) and assumption A1, as well

as the reproducing property of kernel function [5], we have
yi,k = gk(xi) = 〈gk(·), κ(xi, ·)〉Hκ . Based on these prepa-
rations, we develop the following theorem for ĥk(·)

Theorem 2 Under assumption A1, we have

ĥk(·) =

r∑
i=1

ϕ̂i(·)〈ϕ̂i(·), gk(·)〉Hκ ,

where ϕ̂i(·), i = 1, . . . , r are the first r eigenfunctions of
the linear operator

Ln[f ] =
1

n

n∑
i=1

κ(xi, ·)f(xi).
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Using similar analysis as Theorem 2, we can express T∗ as

T∗[f ] =

m∑
k=1

hk(·)〈hk(·), f(·)〉,

where hk(·) =
∑r
i=1 ϕi(·)〈ϕi(·), gk(·)〉Hκ , the projection

of prediction function gk(·) into the subspace spanned by
{ϕi}ri=1. Here ϕi(·), i = 1, . . . , r are the first r eigenfunc-
tions of the integral operator

L[f ] = Ex [κ(x, ·)f(x)] .

Therefore the following theorems bound ‖T̂ − T∗‖2 and
‖L− Ln‖2 by the following two theorems, respectively.

Theorem 3 Let λr and λr+1 be the r-th and r+1-th eigen-
values of kernel matrix K. For a fixed failure probability
δ ∈ (0, 1), assume

λr − λr+1

n
> ‖L− Ln‖2,

where ‖·‖2 measures the spectral norm of a linear operator.
Then, with a probability 1− δ, we have

max
f∈Hκ

‖(T̂ − T∗)[f ]‖Hκ ≤ γ‖T∗[f ]‖Hκ ,

where γ is given by

γ =
2‖L− Ln‖2

(λr − λr+1)/n− ‖L− Ln‖2
.

Theorem 4 [6] Assume κ(x,x) ≤ 1. With a probability
1− δ, we have

‖L− Ln‖HS ≤
4 ln(1/δ)√

n
.

Theorem 1 follows immediately from Theorem 4 and 3.

1.2. Proofs of the Support Theorems

Proof of Theorem 2 : Let (λi,ui), i = 1, . . . , n be
the eigenvalues and eigenvectors of K. Define U =
(u1, . . . ,un). According to [6], the eigenfunctions of Ln
is given by

ϕ̂i(·) =
1√
λi

n∑
j=1

Uj,iκ(xj , ·).

We therefore have
r∑
i=1

ϕ̂i(·)〈ϕ̂i(·), gk(·)〉Hκ

=

r∑
i=1

n∑
a,b=1

1

λi
κ(xa, ·)〈κ(xb, ·), gk(·)〉HκUa,iUb,i

=

r∑
i=1

∑
a=1

κ(xa, ·)
1

λi
Ua,iUb,iYb,k

=

r∑
i=1

∑
a=1

κ(xa, ·)
1

λi
Ua,iU

>
∗,iy

k

=

n∑
a=1

κ(xa, ·)[UrΣ−1r Ury
k]i

=

n∑
a=1

κ(xa, ·)[K−1r yk]i.

Proof of Theorem 3 : Define a linear operator G as

G[f ] =

m∑
k=1

gk(·)〈gk, f〉Hκ .

Define two projection operator P̂ and P as

P̂ [f ] =

r∑
i=1

ϕ̂i(·)〈ϕ̂i(·), f(·)〉Hκ ,

P [f ] =

r∑
i=1

ϕi(·)〈ϕi(·), f(·)〉Hκ .

Using G, P̂ and P , we write T̂ and T∗ as

T̂ = P̂GP̂ , T∗ = PGP.

Using the sin Θ theorem [7], we have

|P̂ − P | ≤ |L− Ln|2
λr(Ln)− λr+1(L)

.

Since λr(Ln) = λr/n, and λr+1(L) ≤ λr+1(Ln) + |L −
Ln|2, we have

|P̂ − P | ≤ |L− Ln|2
(λr − λr+1)/n− |L− Ln|2

.

We complete the proof by using the fact

|(T̂−T )[f ]|Hκ ≤ |(P̂−P )GP̂ [f ]|Hκ+|PG(P̂−P )[f ]|Hκ .

2. Additional Experimental Results
In this section ,we report the comparison results between

our proposed RKML algorithm and the state-of-the-art ap-
proaches for both distance metric learning and image anno-
tation in terms of the average recall and F1 score for the top
t annotated tags.
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2.1. Comparison of Average Recall on Three Bench-
mark Datasets

In Figure 1, 2 and 3, we report the average recall for the
top t annotated tags obtained by the state-of-the-art non-
linear distance metric learning algorithms, linear distance
metric learning algorithms and image annotation methods,
respectively.

2.2. Comparison of Average F1 Score on Three
Benchmark Datasets

In Figure 4, 5 and 6, we report the average F1 score for
the top t annotated tags obtained by the state-of-the-art non-
linear distance metric learning algorithms, linear distance
metric learning algorithms and image annotation methods,
respectively.

3. Comparison of RKML with its Linear or Bi-
nary Constrained Counterparts

In this section, in order to verify the advantage of using
kernel in distance metric learning, we include the the com-
parison between our proposed RKML algorithm and its lin-
ear counterpart RLML. And to illustrate the benefits of the
real-valued similarity measure used in our proposed RKML
algorithm, we also include the comparison with RKMLH,
which adopts the binary constraints used in the baseline dis-
tance metric learning algorithms instead of the real-valued
ones used in RKML.

Table 1, 2 and 3 present the comparison of RKML,
RLML and RKMLH in terms of the average precision for
the top t annotated tags.

4. Sensitivity to Parameters in RKML
In this section, we analyze the sensitivity to parameters

in RKML, including rank r, m′, the number of retained
eigenvectors when estimating the semantic similarity, and
ns, the number of sampled images used for Nyström ap-
proximation. The experimental results shown in Figure 7
lead to following conclusions. First, while the average ac-
curacy of test images initially improves significantly with
increasing rank r, it becomes saturated after certain rank.
However, the prediction accuracy of training data increases
almost linearly with respect to the rank. Secondly, our
RKML algorithm is insensitive to the values of m′ and ns
over a wide range.

5. Comparison of Different Design Choices of
the Semantic Similarity Measure

We examine the choice of semantic similarity by evalu-
ating the prediction accuracy with varied definition of ỹi,j
in Equation (5). ỹi,j is actually the product of a local tag
weight li,j that describes the relative occurrence of tag j in

image i , and a global weight gj that describes the relative
occurrence of tag j within the entire tag collection. The
examined weighting functions [2] are defined as follows in
Table 4 and 5.

Binary li,j = 1 if tag i exists in image j, or else 0.
Term Frequency li,j = tfi,j , the occurrences counts of

(TF) tag j in image i.
Log li,j = log(tfi,j + 1)

Table 4. Local weighting functions.

Binary gj = 1

Normal gj = 1/
√∑n

i tf2
i,j

Idf gj = log2
n

1+dfj

Entropy gj = 1 +
∑n

i

pi,j log pi,j
logn

, where pi,j =
tfi,j∑n
i tfi,j

Table 5. Global weighting functions.

AP@t(%) t=1 t=4 t=7 t=10
Binary-Binary 56 ± 1.01 41 ± 0.57 33 ± 0.49 28 ± 0.45
Binary-Normal 53 ± 1.28 39 ± 0.62 32 ± 0.54 28 ± 0.44

Cosine 56 ± 1.19 41 ± 0.61 33 ± 0.52 28 ± 0.47
TF-IDF 55 ± 1.12 41 ± 0.57 33 ± 0.50 28 ± 0.44
Log-IDF 55 ± 1.12 41 ± 0.57 33 ± 0.50 28 ± 0.44

Log-Entropy 55 ± 1.10 41 ± 0.57 33 ± 0.49 28 ± 0.45

Table 6. Comparison of extensions of RKML with different de-
sign choices of semantic similarity for the top t annotated tags on
the IAPR TC12 dataset. The leftmost column lists the different
weighting methods, where the name before ”-” denotes the local
weights shown in Table 4 and the name behind ”-” indicates the
global weights shown in Table 5. ”Consine” represents the cosine
similarity between tag vectors of two images.

Table 6 shows that different semantic similarity mea-
sures, either TF-IDF based weighting or the popular cosine
similarity, provide essentially similar performances. We
hence adopt the Log-Entropy weighting scheme in our ex-
periments.

6. Comparison of Different Methods of Gener-
ating Binary Constraints

Most DML algorithms were designed for binary con-
straints. We tried to improve the performance of standard
DML algorithms by experimenting with different methods
for generating binary constraints. They are listed as fol-
lows: (1) Clustering the space of keywords, (2) Generating
binary constraints from classification labels1, (3) Clustering

1Flickr1M dataset also includes class assignment labels which is usu-
ally used for classification. ESP Game and IAPR TC12 do not have clas-
sification labels.
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(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 1. Average recall for the top t annotated tags using nonlinear distance metrics.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 2. Average recall for the top t annotated tags using linear distance metrics.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3. Average recall for the top t annotated tags using different annotation models. SVML and SVMK methods are not included in (c)
due to their high computational cost.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 4. Average F1 score for the top t annotated tags using nonlinear distance metrics.

AP@t(%) t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
RKML 55 ± 1.2 48 ± 0.9 44 ± 0.6 41 ± 0.8 37 ± 0.6 35 ± 0.5 33 ± 0.6 31 ± 0.5 29 ± 0.4 28 ± 0.4

RKMLH 50 ± 1.1 44 ± 0.9 39 ± 0.9 36 ± 0.7 33 ± 0.7 31 ± 0.7 29 ± 0.7 27 ± 0.6 26 ± 0.5 24 ± 0.5
RLML 52 ± 1.3 46 ± 1.2 42 ± 1.0 38 ± 0.8 35 ± 0.7 33 ± 0.6 31 ± 0.5 29 ± 0.5 28 ± 0.4 26 ± 0.4

Table 1. Comparison of various extensions of RKML for the top t annotated tags on the IAPR TC12 dataset.

4



(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 5. Average F1 score for the top t annotated tags using linear distance metrics.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 6. Average F1 score for the top t annotated tags using different annotation models. SVML and SVMK methods are not included in
(c) due to their high computational cost.

AP@t(%) t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
RKML 40 ± 1.1 35 ± 0.5 32 ± 0.4 29 ± 0.5 27 ± 0.4 25 ± 0.4 23 ± 0.3 22 ± 0.4 21 ± 0.4 20 ± 0.4

RKMLH 34 ± 1.0 30 ± 0.5 28 ± 0.5 26 ± 0.4 24 ± 0.4 22 ± 0.3 21 ± 0.3 20 ± 0.3 19 ± 0.3 18 ± 0.3
RLML 36 ± 0.8 31 ± 0.7 28 ± 0.7 26 ± 0.7 24 ± 0.5 22 ± 0.4 21 ± 0.4 20 ± 0.4 19 ± 0.4 18 ± 0.4

Table 2. Comparison of various extensions of RKML for the top t annotated tags on the ESP Game dataset.

AP@t(%) t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
RKML 24 ± 0.1 21 ± 0.2 18 ± 0.1 17 ± 0.2 15 ± 0.2 14 ± 0.1 14 ± 0.1 13 ± 0.2 12 ± 0.2 12 ± 0.1

RKMLH 20 ± 0.2 18 ± 0.1 16 ± 0.2 15 ± 0.2 14 ± 0.2 13 ± 0.1 12 ± 0.1 11 ± 0.1 11 ± 0.1 10 ± 0.1
RLML 13 ± 0.3 12 ± 0.2 11 ± 0.2 11 ± 0.1 10 ± 0.06 10 ± 0.05 9.0 ± 0.06 9.0 ± 0.05 8.0 ± 0.06 8.0 ± 0.08

Table 3. Comparison of various extensions of RKML for the top t annotated tags on the Flickr 1M dataset.

(a) IAPR TC12 (b) ESP Game

Figure 7. Average Precision for the first tag predicted by RKML using different values of rank r. To make the overfitting effect clearer,
we turn off the Nyström approximation for IAPR TC12 and ESP Game datasets. Flickr 1M dataset is not included due to its large size
(n = 999, 764). The overfitting only occurs when r approximates to the total number of images, but it is infeasible to apply such a large r
in Flickr 1M dataset.
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(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 8. Average Precision for the top t tags predicted by RKML using different values of m′, the number of retained eigenvectors when
estimating the semantic similarity.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 9. Average Precision for the top t tags predicted by RKML using different values of ns, the number of sampled images used for
Nyström approximation. In (c), ns couldn’t be set too large due to the dataset size.

the space of keywords using hierarchical clustering algo-
rithms, (4) Clustering the space of keywords together with
the visual features, and (5) Generating binary constraints
based on the number of common keywords, i.e., images
sharing more than 4 keywords are considered as similar and
images sharing no keywords are considered as dissimilar.
Note the last one is applicable in LMNN, but not applicable
in many other DML algorithms. For example, RCA [1] and
DCA [3] divide image set into groups where images within
a group are considered as similar and images from different
groups are considered as dissimilar; but this method is not
able to generate such groups. We observe that these meth-
ods yield essentially the same performance reported in our
study, as shown in Table 7.
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