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Background and Motivation
Simultaneously enrich missing tags and remove noisy tags for images.

Motivation:
F Large amount of images with incomplete and inaccurate tags;
F Popularity of tag based tasks, eg., tag-based image retrieval.

Limitations of existing image tagging algorithms:
G Dealing with only one of the two problems;
G Large amount of training images with complete and accurate tags;
G No principled approach of capturing the correlation among tags.

Proposed TCMR Algorithm

+ Convex optimization à computationally efficient;
+ Low rank enforcement à key assumption in topic model;
+ Graph Laplacian exploration à consistent between tags and visual cues;
+ Provide theoretical guarantee for image tag completion for the first time.

Two Assumptions
, Idea of Language Model: Observed tags of each image are drawn inde-
pendently from a multinomial distribution.
* Number of observed tags (m∗) is limited;
* Number of parameters to be estimated is significantly larger than m∗.

, Low Rank Matrix Recovery: Tags of any image are sampled from a mix-
ture of a small number of multinomial distribution.
à Recovered tag matrix has to be of low rank.

Notation
●m, m∗: the number of unique tags or assigned tags for each image;
● D = {d1,⋯,dn}: tagged image set, where di is the i-th tag vector;
● P = (p1,⋯,pn): the multinomial distributions for all images;
● pi: the multinomial distribution to generate tags in di;
● ∣Q∣tr, ∣Q∣1: the nuclear (trace) norm and `1 norm of matrix.

Tag Completion by Noisy Matrix Recovery (TCMR)
Recover the multinomial probability P by combining the maximum likeli-
hood estimation and low rank matrix recovery theory

minQ∈∆ L(Q) ∶= −∑ni=1∑mj=1
di,j
m∗

logQi,j + ε∣Q∣tr.
where ∆ = {Q ∈ (0, 1)m×n ∶ Q⊺

∗,i1 = 1, i ∈ [1, n]}.
+ Left term: ensures consistency between optimal Q̂ and observed tags;
+ Right term: enforces tag matrix to be low rank.
4 Entries sampled from unknown multinomial distributions à likelihood;
7 Entries sampled uniformly at random from a given matrix à square loss.

Theoretical Guarantee of RKML
Theorem. Let r be the rank of matrix P ,N be the total number of observed
tags, and Q̂ be the optimal P . Assume N ≥ Ω(n log(n +m)), and denote
by µ− and µ+ the lower and upper bounds for the probabilities in P . Then
we have, with a high probability

1
n∣Q̂ − P ∣1 ≤ O (rnθ2 log(n+m)

N ) , where θ2 ∶= µ+∣P 1⃗∣∞
nµ2

−
≤ µ2

+
µ2
−
.

+ Recovery error: O(rn log(n +m)/N);
+ Tag matrix can be accurately recovered when N ≥ Ω(rn log(n +m)).

Incorporation with Visual Features and Irrelevant Tags
Optimization problem becomes:

minQ∈∆ −∑n,mi,j=1{
di,j
m∗

logQi,j+ 1−di,j
m−m∗

log(1 −Qi,j) }+ α
nTr(QTLQ) +β∣Q∣tr.

* X = (x1,⋯,xn)⊺: visual features of n images, where xi ∈ Rd;
* W = [wi,j]n×n: wi,j = exp (−d(xi,xj)2/σ2) is the pairwise similarity;
* L = diag(W ⊺1) −W : the graph Laplacian;
* Tr(Q⊺LQ) = ∑ni,j=1Wi,j∣Q∗,i −Q∗,j∣2: tag-visual content correlation.

Efficient Solution
Re-write the objective function as L(Q) = f(Q) + ε∣Q∣tr, and

Qk = arg minQ Ptk(Q,Qk−1) = 1
2∣Q − (Qk−1 − 1

tk
∇f(Qk−1))∣2F + ε

tk
∣Q∣tr.

where tk is the step size for the kth iteration.

Datasets

Comparison with State-of-the-art Baselines

Comparison without Considering Visual Features

With Varied Number of Observed Tags
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