

Background and Motivation

Motivation:

- ◆ Large amount of images with incomplete and inaccurate tags;
- ◆ Popularity of tag based tasks, eg., tag-based image retrieval. Limitations of existing image tagging algorithms:
- \diamond Dealing with only one of the two problems;
- \diamond Large amount of training images with complete and accurate tags;
- \diamond No principled approach of capturing the correlation among tags.

Proposed TCMR Algorithm

Image Convex optimization → computationally efficient;

■ Low rank enforcement ■ key assumption in topic model; Graph Laplacian exploration consistent between tags and visual cues; Reference Provide theoretical guarantee for image tag completion for the first time.

Two Assumptions

Idea of Language Model: Observed tags of each image are drawn independently from a multinomial distribution.

- Number of observed tags (m_*) is limited;
- Number of parameters to be estimated is significantly larger than m_* .
- Solution Notice Network Strain ture of *a small number* of multinomial distribution.
- Recovered tag matrix has to be of *low rank*.

Image Tag Completion by Noisy Matrix Recovery

Zheyun Feng*, Songhe Feng[‡], Rong Jin*, Anil K. Jain*

*Michigan State University, [‡]Beijing Jiaotong University

Notation

- m, m_* : the number of unique tags or assigned tags for each image;
- $\mathcal{D} = \{\mathbf{d}_1, \dots, \mathbf{d}_n\}$: tagged image set, where \mathbf{d}_i is the *i*-th tag vector;
- $P = (\mathbf{p}_1, \dots, \mathbf{p}_n)$: the multinomial distributions for all images;
- \mathbf{p}_i : the multinomial distribution to generate tags in \mathbf{d}_i ;
- $|Q|_{tr}$, $|Q|_1$: the nuclear (trace) norm and ℓ_1 norm of matrix.

Tag Completion by Noisy Matrix Recovery (TCMR)

Recover the multinomial probability P by combining the maximum likelihood estimation and low rank matrix recovery theory

 $\min_{Q \in \Delta} \quad \mathcal{L}(Q) \coloneqq -\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{d_{i,j}}{m_*} \log Q_{i,j} + \varepsilon |Q|_{tr}.$

where $\Delta = \{ Q \in (0,1)^{m \times n} : Q_{*,i}^{\mathsf{T}} \mathbf{1} = 1, i \in [1,n] \}.$ \bowtie Left term: ensures consistency between optimal \hat{Q} and observed tags; Right term: enforces tag matrix to be low rank. Entries sampled from unknown multinomial distributions is likelihood; × Entries sampled uniformly at random from a given matrix square loss.

Theoretical Guarantee of RKML

Theorem. Let r be the rank of matrix P, N be the total number of observed tags, and \hat{Q} be the optimal P. Assume $N \ge \Omega(n \log(n + m))$, and denote by μ_{-} and μ_{+} the lower and upper bounds for the probabilities in P. Then we have, with a high probability

 $\frac{1}{n}|\hat{Q}-P|_1 \leq O\left(\frac{rn\theta^2\log(n+m)}{N}\right)$, wh

Recovery error: $O(rn\log(n+m)/N)$; Tag matrix can be accurately recovered when $N \ge \Omega(rn \log(n + m))$.

Incorporation with Visual Features and Irrelevant Tags

Optimization problem becomes:

- $\min_{Q \in \Delta} \sum_{i,j=1}^{n,m} \{ \frac{d_{i,j}}{m_*} \log Q_{i,j} + \frac{d_{i,j}}{m_*} \log Q_{i,j} \}$
- $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\mathsf{T}}$: visual features of *n* images, where $\mathbf{x}_i \in \mathbb{R}^d$;
- $W = [w_{i,j}]_{n \times n}$: $w_{i,j} = \exp(-d(\mathbf{x}_i, \mathbf{x}_j)^2 / \sigma^2)$ is the pairwise similarity;
- $L = diag(W^{T}1) W$: the graph Laplacian;
- $Tr(Q^{T}LQ) = \sum_{i,j=1}^{n} W_{i,j} |Q_{*,i} Q_{*,j}|^2$: tag-visual content correlation.

Efficient Solution

Re-write the objective function as $\mathcal{L}(Q) = f(Q) + \varepsilon |Q|_{tr}$, and $Q_k = \arg\min_Q P_{t_k}(Q, Q_{k-1}) = \frac{1}{2} |Q - (Q_{k-1} - \frac{1}{t_k} \nabla f(Q_{k-1}))|_F^2 + \frac{\varepsilon}{t_k} |Q|_{tr}.$ where t_k is the step size for the kth iteration.

Datasets

	No. of imgs	No. of tags	Mean, min, max tags per img			Mean, min, max imgs per tag			N Observed tags
Mir Flickr	5,231	372	5.82	4	43	82	10	781	3
ESP Game	10,450	265	6.41	5	15	253	16	3,439	4
IAPR TC12	12,985	291	7.07	5	23	316	14	4,752	4
NUS-WIDE	20,968	420	10.4	9	15	520	78	5,058	4

here
$$\theta^2 := \frac{\mu_+ |P\vec{1}|_{\infty}}{n\mu_-^2} \le \frac{\mu_+^2}{\mu_-^2}$$
.

Table 1. Running time (seconds) for tag completion baselines. All algorithms are run in Matlab on an AMD 4-core @2.7GHz and 64GB RAM machine. Ours

	LRES	TMC	MC-1	FastTag	LSR	TagProp	RKML	vKNN	TCMR	
MirFlickr	5.6e2	$4.7\mathrm{e}3$	8.6e2	$1.4\mathrm{e}3$	6.2e3	2.5e2	$3.0\mathrm{e}2$	2.1e2	1.3e3	
ESP Game	3.4e2	5.8e3	1.0e3	8.6e2	1.3e4	$6.7\mathrm{e}2$	1.3e3	4.3e2	5.9e3	
IAPR TC12	5.2e2	1.2e4	$1.7\mathrm{e}3$	1.6e3	1.6e4	1.1e3	1.5e3	1.0e3	9.4e3	
NUS-WIDE	6.8e3	2.9e4	1.8e3	2.6e3	2.8e4	1.5e3	3.8e3	1.2e3	1.9e4	

recovering from severely noisy

(a) IAPR TC12 AP@3

tags.